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PREFACE 

The increased attention being paid to studies of buffet characteristics is a result of 
design requirements that are currently demanding greater manoeuverabiity in the transonic 
flight regime. Comprehensive information about the adverse effects that separated flow 
excitation can have on the performance of a new project is needed by the designer. The 
complexity of the buffet problem does not allow a theoretical treatment of these problems, 
thus considerable emphasis is placed on wind-tunnel test techniques and flight tests. 

Dr Hwang has undertaken to carry out such flight tests and he presents some thorough 
analyses of flight test data of the F-5A aircraft. 

This contribution constitutes an extremely useful document, which highlights the 
problem areas and gaps that need to be filled in. 

B.LASCHKA 
Chairman, Airframe Response to 
Transonic Separated Flow Working Group 
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TRANSONIC BUFFET BEHAVIOR OF NORTHROP F-5A AIRCRAFT 

Flight tests were performed on an extensively instrumented F-5A aircraft to 
investigate the dynamic buffet pressure distribution on the wing surfaces and the 
responses during a series of transonic maneuvers called wind-up turns. The maneuvers 
to maximum lift were performed at three Mach number-altitude combinations with a 
constant "q" of approximately 14,360 N/rn2 (300 pef). The test conditions were: 
(Mach No./Altitude = (0.75/7,77 2m), (0.85/9,449m), (0.925/10,668n). The fluctuating 
buffet pressure data at 24 stations on the right wing of the F-5A were.acquired by 
miniaturized semiconductor-type pressure transducers flush-mounted on the wing. The 
transducers, with a diaphragm diameter of 0.635 cm (0.250 in.) and a thickness of 
0.076 cm (0.030 in.), were of the high-frequency type (to 30KHz) so that the shook 
pressure and the pressure oscillations on the wing surface could be recorded. The 
data acquired in this manner were found adequate to trace the shock origin, the 
movement of the shock front, and the development of the separated flow (shook-induced 
or leading edge-induced) on the wing surface during the transonic maneuver corresponding 
to various flap settings. Processing of the fluctuating pressures and responses 
included the generation of the auto- and cross-power spectra, and of the spatial 
correlation functions. An analytical correlation procedure was introduced to compute 
the aircraft response spectra based on the measured buffet pressures. Specifically, 
the transonic maneuver was a transient behavior where the pressure and response data 
were nonetationaxy in nature. To simulate the aircraft behavior, a mathematical model 
was created representing a multimodal system excited by nonstationary random forces. 
The model was applied to interpret the sustained structural vibration (wing rock) of 
the aircraft during a transonic maneuver using the time-varying response 

CONPORTEMENT DU NORTHROP F-5A EN PRESENCE DR BUFFETING EN REGIME TRANS SONIQ,UE 

RESUME 

Un F-5A 6quip d'une gamme £tendue d'instruments a t6 sounis doe eesais an vol 
an vue dtudier la r6partition de la pression dynamique sur la surface alaire an 
presence de buffeting, ainsi que lee r6actions,au cours d'une eerie de manoeuvres 
tranesoniques appelees viragos an spirals. Lee manoeuvres, jusqu l'obtention d'une 
portanoe maximale, ont ete effectu6es pour trois combinaisons differentes de nombre de 
Mach at d'altitude, avec une constants "q" d'environ 14.360 N/n2 (300psf). Lee 
conditions des essais etaient lee suivantes: (Nombre de Mach/Altitude) = 0,75/7.772m), 
(0,85/9.449m), (0,925/10.668m). Des donnees sur lee fluctuations de pression an 
conditions do buffeting ont 4t4 obtenues an 24 points de l'aile droite du P-5A l'aide 
de capteurs de preesion miniaturis6s du type semi-conducteur affleurant la surface de 
l'aile. Lee capteurs, presentant un diamtre de diaphragms de 0,635 cm (0,250 pouces) 
at une epaiseeur de 0,076 cm (0,030 poucee) 4taient du type haute frequezice (jusqu'. 
30 KHz) ce qui a permis d'enregietrer la presslon d'onde do choc at lee oscillations 
de preesion le long de la surface alaire. Grace aux donnees ainei obtenues, on a pu 
identifier l'origine at le mouvement frontal do l'onde do ohoc ainsi quo le developpe-
ment do l'600ulement decolle (provoque par londe do choc ou le bord d'attaque) le 
long de la surface alairo au oours do manoeuvres transeoniques correspondent a diverses 
positions do braquage doe vo].ets do courbure. Le traitoment dos donn6es sur lee fluc-
tuations de pression at do r6ponees onglobait la formation des spectres de puissance, 
on propro ou on interaction at dos fonctione do corr6lation spatialo. On a an outre 
introduit une m6thodo do corr6lation analytique pour calculer lee spectres do rponse 
do l'avion an as basant sur lee mesures do proeeion on conditions de buffeting. La 
manoeuvre transsonique representait specifiquement un example do comportement 
transitoiro oi lee donnees relatives aux pressions at aux reponees 6taient do nature 
instationnairo. Pour simulor le comportement do lain, on a etabli un modie 
mathematiquo repr6eontant un eystme modes multiples excite par dos forces aleatoiree 
instationnairos. On a ou recours A, co modle pour interpreter lee vibrations struc-
turales soutonuee do l'avion (tremblement oxcossif do l'aile) au cours d t une manoeuvre 
transeonique utilisant la reponse PSD A. variation tenporollo. 
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NOMENCLATURE 

A,. Fourier transform of the deterministic shaping function for various time 

/ segment 

b  =
Reference semi-chord 

B Equivalent resolution bandwidth  e 

c Mean aerodynamic chord 

f = Frequency 

F Fourier transform of a function 

G Gravitational Acceleration 

h Flight altitude 

Modal influence function for various time segment(s) I(
) 

kr r=ülbr/V Reduced frequency 

M Mach number 
0 

n Total number of time segments 

r Distance between two stations 

R	 - Correlation function 
xy 

t, 7' Time 

T Time span 

V Flight Velocity 

w Structural deflection at a specific loaction 

x,y Function pairs 

Angle of attack 

Y . xy
Coherence function 

Spatial decay constant  

8f
Leading and trailing edge flap angles 

e Normalized standard error

F) FL
y 	 Mean values 

o	 Phase angle 

Po	
Normalized auto-correlation function 

P	
Correlation function coefficients 

xy 

cT, o	 Ems value 

0)	 Circular frequency

vi 



Matrix Conventions 

[ ]
Square or rectangular matrix 

Column matrix 

Ij Diagonal matrix 

[	 J Row matrix 

r 1T 

IJ Transposed matrix 

[	 ] Inverse matrix 

Matrices 

I Aj Wing subarea matrix associated with pressure transducers 

{f(	
)}

Fourier transforms of modal force matrix 

[H] Modal transfer function matrix 

[I(
)]

Modal deflection influence function matrix 

P Measured pressure matrix 

[S(
]

Two-sided spectral density matrix 

[x] Modal shape matrix corresponding to pressure transducer locations 

1 iModal shape matrix corresponding to locations where deformation and/or 
acceleration are computed

{a( )}
	

Fourier transform of modal amplitudes 

Subscripts and Special Symbols 

i, j	 Location indices in Equation (8); j, 3 also serve as modal indices of 
H(w1 ) and Ir(tO)) in Equation (12). 

RW32B24	 Strain gage at RH W.S. 32 designated 824, used with other gages to determine 
sectional bending moment 

RW32S2151	 Strain gage at RH W.S. 32 designated S21S and S44S used to determine 
RW32S44Sf	 sectional shear force 

The work described in this presentation was carried out under Contract NAS2-6475 sponsored by NASA Ames 
Research Center, Moffett Field, Ca.
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INTRODUCTION 

Buffet is a dynamic behavior of aircraft flying at a high angle of attack. It occurs in the tran-

sonic region where the aircraft has substantial forward speed and the angle of attack becomes large due 

to certain maneuvers initiated by the pilot. The initial phase of buffet is called buffet onset when 

noticeable vibrations or oscillations are observed. When the angle of attack is further increased, the 

aircraft responds to the dynamic buffet pressure with severe structural vibrations which are usually 

coupled with rigid body motion oscillations or control system-induced oscillations. This latter phenom-

enon of sustained, large-amplitude aircraft buffeting is called wing rock. 

The major cause of aircraft buffet in the transonic region is flow separation on top of the wing 

surface when the angle of attack reaches a certain amplitude. The separated flow may be induced by a 

shock or by other disturbances. The dynamic loads exerted on the aircraft may be due to the instability 

of the shock (in intensity and location), or due to the dynamic pressure components of the turbulent flow 

especially in the separated region, or both. Furthermore, the separated flow wake may engulf the tail 

sections, which would cause additional instability in the aircraft responses and deterioration of the 

flight control qualities. 

Earlier work on aircraft buffeting may be traced to the associated subject of stalling flutter 

(References 1, 2, 3). Both stalling flutter and aircraft buffeting are caused by flow separation at 

high angle of attack. In stalling flutter, the airfoil motion (for instance, torsional motion) con-

tributes to the cyclic flow pattern which causes a sustained oscillation. In aircraft buffeting, the 

structural elasticity usually is not a major contributing factor (at least in the initial phase of the 

transonic maneuver). The buffeting loads are aerodynamic in origin; they exist even if the aircraft, 

or aircraft model, is perfectly rigid. 

The subject of aircraft buffeting started to attract the attention of designers and research workers 

in the 19501s when aircraft development reached a stage such that transonic flights and maneuvers became 

a routine matter. Typical works by Huston and associates appearing at that time are given as References 

4 through 7. Wind tunnel investigations on airfoil or aircraft buffet in this period include those by 

Humphreys, Coe, Sutter, and associates (References 8, 9, 10, 11). A corresponding work carried out by 

Pearcey is given as Reference 12. Pearcey also wrote a very informative article on shock-induced sepa-

ration and buffet loads (Reference 13). 

Starting in 1960, research and development on aircraft buffeting were conducted at an accelerated 

pace. A large number of papers and reports were published dealing with the various aspects of aircraft 

buffet, including theoretical treatment (e.g., References 14, 15), flight test evaluation (References 16, 

17, 18), and wind tunnel testing (References 19 through 24). Still more recent works dealing with buffet 

of present-day and future aircraft are listed as References 25 through 33. 

The work described in this paper deals with the flight test and data evaluations of the Northrop 

F.5A aircraft In transonic maneuver. A unique feature of the test program involves the extensive dynamic 

pressure Instrumentation using miniaturized semiconductor-type transducers. Both fluctuating buffet
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pressure and significant aircraft response data were recorded on a wideband FM recording system used for 

real-time and spectral analyses. 

The basic transonic maneuver was the wind-up turn executed at specific Mach number and starting 

altitude. The complete maneuver lasted from 12 to 18 seconds, which included level flight entry, buffet 

Onset, wing rock, recovery, and the intermediate stages. The data acquired in a small time segment of 

the maneuver were assumed to be stationary so that auto- and cross-power spectra could be generated. The 

display of a set of power spectra generated for various time segments of the maneuver yielded results 

that illustrated the various phases of the buffet phenomenon. 

To complement the flight test results, work was carried out to correlate the response data using the 

measured buffet pressure and analytical computation technique taking into account the aircraft structural 

and aerodynamic characteristics. The correlation procedure and other statistical processing techniques 

are described in the paper.

BUFFET FLIGHT TEST OF F-5A 

The F-5A used in the buffet test was a single-seat fighter capable of carrying stores at wing fuse-

lage pylon stations. The buffet test was conducted with two wingtip stores; otherwise the wing was clean. 

A three-view drawing of the F-5A is shown in Figure 1. The essential data of the wing are given below: 

Airfoil Section 

Area (Reference) 
Span (clean tips) 
Aspect Ratio 
Taper Ratio 

Sweepback (257 Chord) 
Mean Aerodynamic Chord 
Dihedral Angle 
Incidence Angle

NACA 65AO04.8 (Modified) 

	

15.79 m2	 (170.00 ft2) 

	

7.696 m	 ( 25.25 ft 
3.75 

.20 
24° 

	

2.356 m	 ( 7.73 ft 
0 
0 

L318m 

I 
4.013 m 

16 

4.686m 

14.376 m 

FIGURE 1. BASIC DIMENSIONS OF F-5A
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The aircraft was equipped with leading edge and trailing edge flaps. For the flight test program, 

the leading edge flaps were fixed at 0 0 for some flights and at 40 for others. Likewise, the trailing 

edge flap systems were modified to provide flap travel limits of 0 1 to 81 for certain flights and 0° to 

12 0 for others. The flight test data, including the flight condition parameters, were recorded in a mag-

netic tape system utilizing digital pulse code modulation (PCM) and analog frequency modulation (FM) 

recording. The PCM data were recorded in serial format on two tracks of a 14-track, 2.54-cm-wide (1-in.) 

magnetic tape. Each track of PCM data accommodated 20 data parameters. Eleven tracks were utilized for 

FM recording and one track was used to record pilot's voice annotations and event mark signals. Each 

track of FM data accommodated 3 data parameters. The wideband magnetic tape recorder, operating at .381 

meter per second (15 inches per second), provided suitable frequency response characteristics and allowed 

60 minutes of recording time on one tape reel. The FM data were subsequently digitized at a sample rate 

of 5,000 points per second to be used for real-time and spectral processing. A schematic of the data flow 

including the airborne recording system and the ground station processing is shown in Figure 2. 

FIGURE 2. FLIGHT TEST DATA FLOW DIAGRAM 

Data recorded In the PCM system included the load factors at CC, the pilot seat and a number of wing-

tip locations, the angle of attack, the pitch attitude and the pitch rate, the roll and yaw rates, the 

right-hand aileron position, and the right-hand trailing edge flap hinge moment. Five sets of dynamic 

pressures were also recorded in the PCM system. 

The FM recording system permitted recording of dynamic data at frequencies up to 1,600 Hz based on 

a modulation index of 5. As mentioned above, frequency multiplexing was used to carry 3 data parameters 

of each of the 11 recording tracks. For each track, the center frequencies of the discriminators were 

64, 96, and 128 KHz, respectively. The bandwidth of the modulated frequency was ±8 KHz. The parameters 

recorded in the FM system included 20 dynamic pressure data sets. In addition, 6 sets of internally 

mounted strain gage output were also recorded which were used to determine the dynamic wing stresses. 

The remaining FM data spaces were used to record the aircraft CC and wingtip load factors, the aileron
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hinge moment, and the event marker. A separate photo panel recording system recorded the basic flight 

data, including the indicated airspeed, the pressure-altitude, the ambient temperature, the fuel quanti-

ties, an event light, and a correlation counter. 

To record the dynamic pressures, 24 miniaturized differential pressure transducers were installed on 

the right wing of the test aircraft. These pressure transducers had a diaphragm sensor unit (0.635 cm 

diaphragm diameter). Four-arm semiconductor gages connected in a bridge circuit were mounted on the in-

ternal face of the diaphragm. Temperature compensation was achieved through thermistors and active tem-

perature components located within the transducers. Each transducer had a reference pressure outlet which 

was connected to the reference source. The nominal pressure range was 1.724 N/cm 2 (2.5 psi) with an over-

pressure tolerance of 3.448 N1cm2. 

To minimize the interference to natural flow conditions, the transducers were flush-mounted on the 

right wing surfaces together with a 0.1016 cm (0.040 in.) plexiglass jacket assembled in strips. A 15- 

to-1 taper was cut on the outer circumference of the plexiglass jacket to minimize flow interference. 

The 24 pressure transducers are identified by numbers in Figure 3 where the plexiglass covered areas are 

20%c

co 

I	 \

c.,1	 III 

.16	

.23 

75%c	

• 17	
• 13	

.6	 I
UPPER 

.2	
j SURFACE 

80%c	
.18	 .14	

1.8	
.	 Ii 

I	 ! 
(j	

'

W do	 tn 
U)	

(I )m	 m	 C1 

0

I	 I

21	 II 90%c

- -

	
LOWER 

19	 SURFACE 

V 
FIGURE 3. DYNAMIC PRESSURE TRANSDUCER LOCATIONS ON F-5A RIGHT WING
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indicated by the heavy outlines. Internally, the reference pressure tubings from all transducers were 

plumbed into a common manifold chamber located inside the lower right-hand section of the fuselage. 

The basic maneuver used in the test program was the wind-up turn at constant Mach number. Specifi-

cally, wind-up turn maneuvers to maximum lift were performed using '3 Mach number/altitude conditions. 

These conditions were (Mach number/altitude) = (0.75/7,772m), (0.85/9,449m), (0.925/10,668m). 	 Various 

combinations of leading edge and trailing flap settings (retracted or extended) were maintained during 

the test maneuvers. Data were recorded from l-G level flight through recovery from the maneuver. 

PRESENTATION OF REAL TIME DATA 

The transonic maneuver was executed by a combined turn and roll motion at maximum thrust. The air-

craft was allowed to lose altitude so that the Mach number was maintained. In a typical wind-up turn at 

the test altitude range, 7,772 to 10,668m (25,500 to 35,000 ft), the lost altitude was in the range of 

152-305m (500-1,000 ft). During this time, the angle of attack was increased to a maximum value. As 

the angle of attack increased, the buffet onset was first encountered. The buffet onset could be detected 

either based on instrumentation (e.g., accelerometer under the pilot Seat) or based on pilot perception. As 

the angle of attack reached its maximum, sustained structural vibration of the aircraft (i.e., wing rock) 

took place. Wing rock usually was accompanied by severe rigid body oscillations such as the yaw and pitch 

motions. The structural vibrations and the rigid body oscillations both affected and degraded the aircraft's 

tracking ability. To terminate the maneuver, the pilot pushed the stick forward and returned the aircraft to 

a level position. 

Typical oscillographs giving time histories of the slideslip and roll angles of a wind-up turn are 

shown in Figure 4. The data were collected in a previous program (Reference 26) with M = 0.89 and alti-

tude h = 10,668m (35,000 ft). In this maneuver, a maximum angle of attack of 18 0 was reached at 

FLIGHT 657	 FLIGHT TEST & BUFFET CRITERIA 

1	 80.5 92.0	 0 81 RUN 7 35KFT 0.89M WIND-UP TURN FLAPS 0/0 

S	 6.0 

4.0 

S 
L	 2.0 

P
0 

A

-2.0.
	 LATERAL DIRECTIONAL 

L
	 OSCILLATION ONSET 

E	 -4.0

0
	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11 

-20.0 i 

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11 

TIME - SECONDS 

-4O.0 

L 
L

-60.0 
A 
N 
G 
L -80.0 
E

—100.0 1 

0

FIGURE 4 • LATERAL-DIRECTIONAL OSCILLATION HISTORIES OF A TRANSONIC WIND-UP TURN 

0.89, h = 10,668m (35,000 feet),8 = 0 0 , 8 = 00
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t = 9 seconds. The oscillographs clearly showed the oscillatory motions of the aircraft during the 

maneuver as the angle of attack increased. They are typical and similar to data collected in the 

present test program. 

In the test program, the PCM data were processed through low-pass filters which retained the steady-

state and low-frequency components up to 30 Hz (120 Hz for super-commutated dynamic pressure data). The 

data were valuable in assessing the general behavior and response of the aircraft during the maneuver. This 

was in contrast to the FM data which were screened by the high-pass filters so that the dynamic components 

related to shock and shock oscillation could be amplified and studied in detail by eliminating the steady-

state data. Typical PCM data corresponding to Mach number 0.925 and an initial altitude of 10,668m 

(35,000 ft) are shown in Figures 5, 6. 

In Figure 5, the oscillographs were transcribed from a single PCM data set as compared to the digital 

tape data which were compiled from the super-commutated PGN data sets. Pressure Transducer Number 4 was 

located at 85% semi-span and 90% chordwise position at the top surface of the right wing (see Figure 3). 

The data showed a substantial decrease in pressure (increase in lift) as the angle of attack increased. 

This is consistent with the flow behavior prior to and during the development of a shock-induced separation 

wake on the airfoil surface, The remaining traces of Figure 5 give the steady-state and low-frequency pres-

sure data on W.S. 128.31 (85% semispan) at the bottom surface of the right wing. The pressure data under 

discussion were pressures relative to a static source registered in the manifold chamber in the fuselage. 

At this altitude, 10,668m (35,000 ft), the aircraft lost approximately 259m (850 ft) during the maneuver. 

The reference pressure increased approximately .1372 N/m 2 (0.199 psi) corresponding to the drop in altitude. 

This substantial variation in reference pressure during the transonic maneuver should be considered in eval-

uating the steady-state pressure data. 

331	 332	 333	 334	 335	 336	 337	 338	 339	 340 
TIME (SECONDS)	 1.60	 1.60	 1.60	 2.20	 4.10	 7.89	 12.30	 13.90	 3.20	 1.20 0. - 

PRfS	 't 

X103 N/M2 

-I

jill 

i 
j 

iji 
,lDN/M2

-10 

o------- ----- -7---

X103 N/M2!

;OI ps 

X103 N/M2 

FIGURE 5. TYPICAL WING TOP AND BOTTOM SURFACE PRESSURE HISTORIES OF FLIGHT 825, 

RUN 5, H = 0.925, h = 10,668m, 8 , 	 001 
6f	

00
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Figure 6 gives the normal and longitudinal accelerations (Nz,NA) at the CC of the aircraft as well 

as the normal accelerations recorded at the two stations of the right-hand wingtip. 

At lower altitude, 7,772m (25,500 ft), and lower Mach number, M 	 0.75, the steady-state pressure 

pattern was similar to the case described above (M = 0.925, h = 10,668 a), while the amplitudes were some-

what lower for the lower Mach number case. (This is in contrast to the high frequency dynamic pressure 

data where the Mach number effect was prominent.) Correspondingly, the load factor oscillographs showed 

the same general pattern with relatively lower peak amplitudes. 

TIME - SECOND
331	 332	 333	 334	 335	 336	 337	 338	 339	 340	 341 
1.60	 1.60	 1.60	 2.20	 4.10	 7.80	 12.30	 lag°	 3.20	 1.20	 3.00 

NZ CG

4.0 

3.0 

2.0 

NA CO (0)	
1.0 

1.0
0 

0.5 

NZ R  WIT (G)	 0 

50

FIGURE 6. CG AND RIGHT WING TIP (FORWARD AND AFT) ACCELERATION TIME HISTORIES
OF FLIGHT 825, RUN 5, N = 0.925, h 	 10,668 m,	 00, B = 00 

A set of typical FM data acquired in a test flight (M = 0.925, h = 10,668m or 35,000 ft) is pre-

sented here. During the flight maneuver, the leading edge and trailing edge flaps were extended to 

= (4 0 /12 0 ). In general, the dynamic pressure data at the outboard wing stations were less significantly 

affected by the extension of the flaps as compared to the lower Mach number case. The corresponding pres-

sure data at the inboard stations, especially those wing stations covered by the trailing edge flaps, were 

to a larger degree influenced by the flap settings. 

Dynamic pressure data acquired by the FM system are shown in Figures 7 through 10. Each figure has 

three oscillographs that are properly identified (see Figure 3 for station number identifications). On 

top of these figures, the time counts in seconds are noted, as well as the instantaneous angle of attack 

data. The traces covered 14 seconds during which a wind-up turn was performed. As the angle of attack 

was increased, the first major noticeable pressure oscillation appeared at t 073.0 at Station Number 2 

(Figure 7). The pattern indicated oscillation of the shock front as a result of downstream separation 

during the maneuver. Downstream separation can be seen in the pressure fluctuation at Stations 3 and 4 at 

t = 073.0. This can be defined as the buffet onset point. The pressure oscillations defining the loca-

tion of the shock-induced separation did not show significant influence on the fluctuating pressure at 

upstream locations. They did affect the downstream stations where the separated flow took place. As the 

angle of attack was further increased (to approximately 6.2° at t = 076.0), the separation boundary (as 

defined by the shock front oscillation) moved to Station No. 1 (20% chordwise position) at 907. semispan
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section. The pressure traces behaved in a somewhat random fashion when the angle of attack continued to 

increase and the local station was under the separated flow. 

Similar shock and pressure fluctuation behavior was observed at W.S. 110.30 (72.87. semispan, Pressure 

Station Numbers 5, 6) and W.S. 93.0 (617. semispan, Pressure Station Numbers 10, 11, 12). The pressure 

across the shock, as indicated by Pressure Trace Numbers 5 and 10, was almost Identical to those based on 

Pressure Trace Number 1 (6,000 N/rn2). The approximate time when the complete top wing surface was under 

separated flow was identified through Pressure Trace Number 15, when large-amplitude random oscillation 

appeared abruptly at t = 078.9, with a = 9.4°. Pressure Station 14 was on the trailing edge flap surface. 

Except for a somewhat higher peak-to-peak oscillation amplitude, no major variations of the pressure trace 

were observed as compared to those of nearby stations. 

MME CI	 012	 073	 074	 075	 076	 077	 078	 079	 080	 081I 	
L-O( f.6* I4	 1.6	 Z4	 3.8	 6.2	 66	 &9	 9.4	 II.7	 a 

XtOSNIN2 

PRESS	
N/ti2 PS?	

-- r	 ,.'.. 

!	 •	 - 

X103 N/M2 PSI 

PREM

-4

FIGURE 7. OSCILLOGRAPHS OF PRESSURE STATION NUMBERS 1, 2, 3, RECORDED IN RUN 2, 
FLIGHT 871. N	 0.925, h = 10,668m,	 40, 8 = 120. 
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I.'. 

FIGURE 8. OSCILLOGRAPHS OF PRESSURE STATION NUMBERS 4, 5, 6, RECORDED IN 

	

RUN 2, FLIGHT 871. H	 0.925, h = 10,668 m, 8 
n 
= 40 , 8 =12°.
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TIME 071	 072	 073	 074	 075	 076	 077	 078	 079	 080	 081	 082	 083	 084	 085 
O(	 I.6	 .6	 1.61	 2.41	 3.8	 62	 6.6	 &q.9.4•	 11.1.	 12.6•	 t I40	 32	 Or	 1.0 
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rm
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FIGURE 9. OSCILLOGRAPHS OF PRESSURE STATION NUMBERS 10, 11, 12 RECORDED
IN RUN 2, FLIGHT 871. H0 = 0.925, h = 10,668m, 8 	 120. 

TIME 071	 072	 073 	 074	 075	 076	 071	 078	 079	 oço	 OI	 oz	 03	 oss 
OC	 1.61	 1.61	 2.4' .	 s.r	 or	 63	 tO	 9.4	 ILr	 1W	 14.0	 or	 0.7' 

	

1(10 N/Us	 L5.0 
1 i 

*IO N/U2 p 

- 1: _OT.•_ 
SS'i4	 -	 - 

1(53 

PRESVIS !4-_-

FIGURE 10. OSCILLOGRAPHS OF PRESSURE STATION NUMBERS 13, 14, 15 RECORDED 
IN RUN 2, FLIGHT 871. N = 0.925, h 	 10,668m, 8 = 4° &f = 120. 

Typical wing structure strain gage data were recorded in three traces of Figure 11. These strain 

gage data were used to determine the dynamic loads at a given section based on empirical formulas estab-

lished in ground tests. For maneuvers performed at M	 0.75 and h	 7,772 in, the flow separation was 

essentially leading edge-induced. The dynamic pressures recorded in the FM system were more random in 

nature, and no large amplitude oscillations (characteristics of local shock) took place. Three pressure 

traces (numbers 1 through 3) corresponding to a N = 0.75 maneuver are given in Figure 12. 

	

071	 018	 071	 078	 O	 00	 -081	 081	 083	 084	 018 

	

1.8	 lb	 ZA	 5.8	 62	 66'	 69'	 94	 tt.r	 126'	 0'	 22	 or 

RW32B24 816520 

GAGE 
RW32S21S

STWM 

GAG
- 

FIGURE 11. OSCILLOGRAPHS OF GAGES RW32B24, RW32S21S RW32S44S, RECORDED
IN RUN 2, FLIGHT 871. H 0 = 0.925, h = 10,668m,	 4°, 8 f = 12°.
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15.5	 11.6. TO 
PRM* _________________________________..  

*103N/M2

, 
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FIGURE 12. OSCILLOGRAPHS OF PRESSURE STATION NUMBERS 1, 2, AND 3, RECORDED IN 

RUN 7, FLIGHT 825, Mo = .75, h = 7,772m, 8, =0, 
8 = 00- 

Figure 13 illustrates schematically the variation of the separation boundary with time obtained from 

the real-time pressure data such as those presented above. In determining the boundary details where the 

•i	 a	

UMR 

 

(a) RUN 7, M 0 0.75, h = 7,772 m 

T(1 

(b) RUN 6, M 0 = 0.85, h = 9,449 m 

;	 -	

lo 

 

(c) RUN 5, M 0 = 0.925, h 10,668 m 

FIGURE 13. UPPER WING SURFACE SEPARATION BOUNDARY MAPPING FOR THREE RUNS OF 
FLIGHT 825 (6n/6f = 00/00)
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local fluctuating pressure data were unavailable, use was made of tuft data obtained in a previous flight 

test program (Reference 26).

SPECTRAL AND STATISTICAL PROCESSINGS 

The spectral and statistical processings applied in the present program followed the common procedures 

used in flight and other test programs (see, for instance, Reference 35). Auto- and cross-correlation 

functions were generated based on synchronized real time data. The corresponding auto- and cross-power 

spectra were computed based on the Fourier transform of the correlation functions. In an alternative 

approach, the power spectral density function was computed using the complex-conjugage product of the 

Fourier transform of the original function. The coherence function, which determines the degree of cor-

relation between two sets of data, was computed based on the absolute value of the cross-power spectral 

function and the two auto-power spectral functions. Usually, two Sets of data were highly correlated if 

they were originated by the same physical phenomenon; in which case, the coherence function values were 

close to unity. 

A quantity equivalent-to-coherence function in the time domain is the correlation function coeffi-

cient (normalized cross-covariance function) which is defined by: 

R (r) _iz	 y 
P 	

=	 xy	

(1) 
- !Lx] [Ry (0) - /iy] 

-1 5 pxy (r) l for all r's 	 (2) 

where 1A and 
Ay 

are the mean values of x(t) and y(t) respectively. The function PXY (r) measures the 

degree of linear dependence between x(t) and y(t) for a displacement of r in y(t) relative to x(t). 

The transonic maneuver of an aircraft is transient in nature, the power spectra of the flight test 

data is computed based on the assumption that the dynamic data within a limited time segment is random 

and almost stationary. On the other hand, the normalized standard error € of a spectral function is 

determined by

€ = ( Be T)
	

(3) 

where Be is the effective resolution frequency andT is the time span. Thus, the requirements of 

stationarity, a high degree of frequency resolution, and a minimum normalized standard error pose con-

flicting conditions on the processed data. It is then important to weigh these factors and to determine 

the most appropriate time span, sampling rate, and resolution frequency(s) for spectral processing. In 

the subject program, a study was made by varying the processing parameters to ensure that the normalized 

standard error of the spectral data was within a reasonable range. 

The pressure data were processed and converted into power spectra for the windup turn at N = 0.75 

and h = 7,772m (Run 7, Flight No. 825). Figure 14 shows the pressure power spectra obtained at the top 

surface of Wing Station 128.31, 90% seinispan, and 90% chord position (Pressure Station No. 4,Figure 3) 

for a separated flow condition. The power spectrum in the frequency range above 100 Hz seemed to follow
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the —5/3 slope indicated by the inserted broken line. While not claiming any physical similarity between 

the separated flow behavior described here and the case of the homogeneous turbulent flow, it is worthy 

of noting that the -5/3 slope is predicted by the theory of universal equilibrium in homogeneous turbu-

lent flow (see Reference 34, "The Structure of Turbulent Shear Flow," by A. A. Townsend). The time span 

during which the spectral data of Figure 14 were acquired was t = 363.4 - 364.22. During this time, the 

flow on the complete upper wing surface became separated. A typical power spectrum plot for an inboard 

pressure Station located in the trailing edge flap, Pressure Station No. 18, Figure 3, acquired at the 

same time interval is shown in Figure 15. Figure 15 shows that the PSD level was quite high at this time. 

It represented an overall peak in spectral power for Station No. 18 during the complete maneuver. A major 

cause of the high spectral power at Station No. 18 was contributed to the high turbulence when the local 

flow became separated.

b	 1.178 M(3.865FT) 

V -231.6 M/SEC (760 FPS( 

AIRPLANE	 (1-6009	 FLIGHT 625 
POWER SPECTRAL DENSITY 

01 363.4 364.22	 WIND UP TURN .75M 7772 H	 ANG(7.9-12.3) 
1.0X[0+ 

FREQUENCY-HERTZ 

I	 I	 I	 I 
0.05	 0.10	 0.50	 1.0	 5.0	 10.0 

k- WbrN 

FIGURE 14. POWER SPECTRUM OF BUFFET PRESSURE AT WING STATION 128.31, 907., CHORD 
POSITION, FORM = 0.75, h = 7,772m, 8 n =
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FIGURE 15. POWER SPECTRUM OF BUFFET PRESSURE AT WING STATION 50.00, 80% CHORD 
POSITION, FOR N = 0.75, h = 7,772m, 8 = 00, & = 00. 

For data acquired in Run 5, Flight 825 (N = 0.925, h = 10,668m, 	 = 00/0 0 ), five time segments 

were chosen for spectral processing. Each time segment represented 1.025 seconds. Roughly, the five time 

segments may be classified as follows (also see Figure 13(c)). 

Designation Starting Time Initial Description 

A 334.0 2.20 Initiated wind-up turn. Shock 
appeared at localized area. 

B 335.03 4.10 Buffet Onset. 

C 336.06 7.80 Separation region expanded. 

D 337.09 12.30 Separated flow covered the 
complete wing surface. 

E 338.12 13.90 Recovery initiated.
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The five PSD plots for each function corresponding to the time segments (A) through (E) are presen-

ted in one figure. For Pressure Station Number 1, the PSD t 5 are shown in Figure 16. Referring to the 

figure, at time segment A, the flow at Station Number 1 was unseparated, the PSD level was at its mini-

mum. In time segment B, the shock appeared and passed through the local station. The PSD showed drastic 

increase and reached its peak values of the complete maneuver. The PSD level subsided gradually in time 

segments C, D when the shock boundary moved inboard and the separated flow region expanded on the wing sur-

face. The relatively high PSD level in time segment E was contributed to the high turbulence during wing 

rock and the turbulence caused by the transient recovery maneuver. 

For the same flight, the PSD's for the CC normal acceleration are given in Figure 17. The corres-

ponding right-hand aileron hinge moment PSD's are given in Figure 18. 

FIGURE 16. PSD's OF PRESSURE NO. 1 BASED ON VARIOUS SEGMENTS OF 

REAL TIME DATA, H = 0.925, h 	 10,668m,	 /* = 00/00
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Returning to dynamic pressures: in general, if two stations are fairly close to one another and the 

disturbances at the two locations are caused by the same source, it is expected that their auto-correlation 

functions and auto power spectra are of the same general shapes. A plausible model of the correlation 

function for any two stations x, y was proposed in Reference 32 (Eq. 5-8, p. 43) as: 

Ft(r,r) =cTO-  exp (-6 tn) p0 ( ,r- T' )	 ( 4) 

where o, o denote the rms values (with zero mean), r is the distance between the two points, & is the 

spatial decay coefficient, Tis time, and r! relates to the time of convection of the pressure from one 

point to the other. p0 denotes the normalized auto-correlation function. Based on the above assumption 

of identical or near-identical auto-correlation functions (different only in amplitude), the phase angle 9 

of the cross spectral density 10 and the cross-correlation coefficient as defined by Eq. (3) may be
XY 

expressed in the following:

o = -21rfr' 

P(r,r') exp (- 81rl	 Y	 (r, f
NY	

) xy 

In Eq. (6), )'	 is the square root of the coherence function. Apparently, 	 is assumed to be inde-

pendent of frequency f. Based on Eq. (6), the spatial decay constant 8 may be determined. Processing of 

flight test data indicated that the above condition was true only in limited locations for certain flight 

maneuvers. For instance, based on dynamic pressure data obtained in Run 2, Flight 871 (H = 0.925, h 

10,668m), the contours of equal Yxy were plotted in Figure 19 for Station Number 2. The contours were 

plotted only in the area where the convection effect was observed and the approximate formulation of Eq. (6) 

was applicable.

(5)

(6) 

MM 

FIGURE 19 • CONTOUR OF MEAN SQUARE ROOT VALUES OF COHERENCE FUNCTION Y FOR 
BUFFET PRESSURES OBTAINED IN RUN 2, FLIGHT 871, 
H0 = 0.925, h = 10,668m, 8n = 40, 8 = 120
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AIRCRAFT RESPONSE ANALYSIS 

In order to improve the analytical correlation of aircraft response results, the major portion of a 

transonic maneuver is divided into a number of segments. In each segment, the buffet pressure data are 

assumed to be stationary. The aircraft is then subjected to the consecutive application of the buffet 

loads, and the cumulative dynamic effects are reflected in the time-varying PSD of response. The approach 

was applied to the following set of flight test data: 

Flight Number 
Mach No. 
Altitude 
Flap Settings 
Low-Frequency Digital 

Tape Frame Rate 
Time Increment 
Frequency Increment 
Spectral Frequency 

Range

871, Run 2 
0.925 

10,668m (35,000 ft) 
(4°/l2°) 

1000 per sec 

0.002 sec 
0.488 Hz 
1.4 - 20.0 Hz 

Some of the real-time data of this run were given previously in Figures 7-11. Altogether, dynamic 

pressure data covering the time span 073.00-082.10 second were used. The data were divided into 4 equal 

time segments. The computation was carried Out using the rigid body plunging mode and the first three 

symmetrical flexible modes. The pitch mode was not included because of lack of tail surface dynamic 

loads data. 

The segment stationary analysis starts with the PSD matrix of the modal forces f, f a where r, s are 

time segment indices and f , f are column matrices themselves. 

[x]T IA] [s	 (w)IJ IA] [x] 

where

T	 *	 1	 perfect spatial correlation 
iS	 (.')l 	 =	 F	 (w,T)F	 (w,T) 
t. rs	 j	 ri	 Psi	 6	 zero spatial correlation	 (8) 

The aircraft modal transfer function matrix is [ii (co) ], which is determined based on aircraft mass, 

and mass distribution, damping, and stiffness data, as well as its aerodynamic characteristics. According 

to the nonstationary analysis or segment stationary analysis, the PSD matrix of the modal coordinates a 

due to buffet pressure excitation defined by Eq. (7) is: 

cod] = [l1(w)] [SQ(w1 )2)] [H*(w2)]T 

n a

f

A(w - ø) [H(-,)] [x]T IAJ [s	 (w)] rAj 
r-1 s= 1 -oo 

[x] [H*(w)2]T A (w - co) dw	
(9) 

where Ar(co_øj)i A (co-co2 ) are the Fourier transforms of the deterministic functions defining the buffet 

pressure inputs in time segments r, s. Introducing a row matrix LYJ , which is the modal shape matrix, 

the PSD of deformation w at a specific location of the aircraft and the ms value of w2 (t) may be com-

puted as follows:
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Ti	 Ti 

S ( .'i, w2) =	 E J°° 
A(e - "i) Li [H(1)] [X]T IAj [S pp (1

r1 5'1 - 

[AJ [x] [H*(w2)] T {YT}A*( -	 dw	 (10) 

['(,2( 1 w2) t] d.,1 d2  t) =ffoo S (W19 ø)exp w2 

Ti n
J[YJ [,,(t, )] [x]T IAJ [s()] FAi 

r1s1 -oo 

	

[I(t,w)]T {yT} d.	
(II) 

where 

(Ir(t(J))jj	
f 

(H( 1))
ij

 A(w - w1) exp (ia 1t d1	
(12) 

The above analysis is used to compute the F-5A spectral responses based on the measured buffet 

pressures. (For a more detailed formulation, the reader is referred to Reference 36) Using the flight 

test data described at the beginning of this section and the F-5A structural and aerodynamic data, the 

nonstationary acceleration PSD's for the CG and two stations of the right wingtip are computed at specific 

times, one each within the four time segments. These results are plotted in Figures 20-22. Also plotted 

are the corresponding segmentwise stationary PSD ? s based on the flight test response data. For the two 

sets of response PSD's at the right-hand wingtip, the computed data are too high in the first segment. 

This is believed due to the higher damping (of the Coulomb type) at the initial phase of the maneuver not 

accounted for in the computation. The correlation is more satisfactory in the third and fourth segments 

when wing rock takes place. For the CG acceleration PSD's, Figure 22, the computed first segment PSD 

values are low because more spectral energy has been contributed to wing vibrations at this time segment 

as explained above. For the later segments, with some exceptions, a somewhat better correlation between 

the computed and flight test PSD data is realized. 

In Figure 23, the time varying mean square acceleration for the CG and the two stations of the right-

hand wingtip based on the segmentwise stationary formulation are plotted. Again, only spectral contribu-

tions in the frequency range 1.4-20.0 Hz are accounted for. The figure reflects the very low CC response 

in the first time segment as described above. The substantial differences in mean square accelerations 

between the two wingtip stations reveal substantial wing torsion mode participation. In general, the 

correlation of analytical and test response PSD data is more satisfactory using the segmentwise station-

ary approach as compared to the approach where a major portion of the transonic maneuver is considered 

stationary.
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CONCLUSIONS 

Based on the buffet flight tests and the related analytical processing, the following conclu-

sions may be drawn: 

1. Precise and detailed dynamic pressure data acquisition for aircraft during transonic buffet 

is feasible and can be productive. No significant adverse effect of the added instrumentation 

and change of airfoil geometry to the natural flow pattern was observed based on the dynamic 

flow development on the wing and the comparison with the tuft data. Fairly Consistent mapping 

of the separation boundaries was achieved. 

2. Shock instability in a steady-state uniform flow has been observed in previous wind tunnel 

and theoretical treatments under specific conditions depending on Reynolds number and local 

Mach number. The dynamic pressure of the F-5A showed definite oscillations where the sepa-

ration boundary was located. It is uncertain whether the cause of the shock oscillation was 

solely due to the inherent shock instability; the cause might be partially attributable to 

the interaction with aircraft motion and angle of attack changes. This point remains to be 

resolved. In general, the amplitude and pattern of the shock oscillations were such that 

they were expected to contribute significantly to the aircraft motion.
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3. The effects of Mach number, flap settings, altitude, external store attachments, etc. 

(or of a combination of the above parameters), may be investigated quantitatively using 

the instrumentation described in the report. These results usually are more precise and 

informative as compared to the buffet onset data acquired in most flight test programs. 

4. The pressure PSD distributions of a buffeting aircraft were such that the establishment 

of a mathematical model based on a number of flight condition parameters was feasible. 

Whether the mathematical modelis general enough to cover various types or designs of 

aircraft is a matter subject to future investigation. 

5. The spatial correlation of the buffet pressures at various locations of the wing was 

either high or moderately high in the outboard stations near the wingtip. Substantially 

lower spatial correlation was observed for pressures between inboard stations or between 

one inboard and one outboard station. 

6. Given detail buffet pressure data, the aircraft responses were predicted in the low-

frequency range using linear transform function technique. The segmentwise stationary 

approach was the preferred approach. With additional refinements in both buffet pressure 

model formulation and aircraft transfer function computation, a practical method can be 

developed for aircraft buffet response prediction. 

7. The aircraft rms load levels at CG and key structure locations are usually not high in a 

transonic maneuver as compared to the design load levels. Apparently, the pilot is more 

aware of and sensitive to the buffet loads (longitudinal and lateral) due to the dynamic 

nature of the responses and the interaction with the control system. 
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